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The problem of designing robust active control systems is addressed in this paper.
A variety of active control design problems are formulated as semide"nite programming
(SDP) problems. An SDP problem is a convex optimization problem, consisting of a linear
objective function subject to linear matrix inequality (LMI) constraints. First, an
SDP formulation is presented for the design of multichannel LMS algorithms with
limited-capacity secondary sources. Simulations show that this SDP formulation is an order
of magnitude more computationally e$cient than the usual non-linear constrained
optimization formulations. Secondly, the design of robust LMS algorithms is presented as
an SDP problem. These algorithms minimize the worst-case control error in the presence of
unknown but norm-bounded perturbations on the secondary path model and on the
primary "eld. Both the unstructured and structured perturbations cases are considered. The
resulting controllers are exact solutions to the robust control design problem, except in
the most general case of structured perturbations when they only minimize an upper bound
on the worst-case residual control error. Thirdly, SDP formulations are proposed to
compute guaranteed stability limits for the adaptive multiple-channel leaky LMS algorithm
in the presence of both unstructured and structured perturbations on the secondary path.
Monte Carlo simulations show that the obtained stability limits are much more reliable than
previously used limits, based, for example, on the Gershgorin circle theorem.
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1. INTRODUCTION

The adaptive feedforward LMS algorithm, as "rst proposed by Elliott et al. [1], is widely
used in multiple channel active noise control systems. Such large-scale active noise control
systems are now commonly installed, for example, in the passenger cabin of propeller
aircraft [2], where the disturbing sound "eld is predominantly tonal. The LMS algorithm
drives a number of secondary sources, usually loudspeakers or electrodynamic shakers
which are appropriately distributed over the cabin or the aircraft fuselage, so as to minimize
the sum of the squared signals from the error microphones, located in the area to be
silenced. The algorithm relies on the knowledge of the transfer function matrix from the
secondary sources to the error microphones (the so-called secondary path transfer function
matrix) to generate the optimal control signals. However, this secondary path transfer
function matrix is subject to changes under operational circumstances due to, for example,
changing #ight conditions, fuselage pressurization, passengers moving around in the cabin,
etc. One way to cope with that problem is to measure this transfer function on a regular
basis during operation of the control system, and adapt the controller accordingly. The
0022-460X/01/210023#20 $35.00/0 ( 2001 Academic Press
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drawback of this on-line identi"cation approach (as proposed by Bao [3]) is, "rst, the need
for injecting additional noise in the system, and, second, the signi"cantly increased
computational load on the control system signal processing unit. An alternative way is to
design a control algorithm which is robust to such changes.

Robust control systems are generally required to exhibit two types of robustness
properties [4]. Robust stability means that the control system remains stable under
changing operational conditions, while robust performance means that the control system
achieves its required performance under changing conditions.

Boucher et al. [5], Elliott et al. [6], and Elliott [7] discuss the robust stability analysis of
the adaptive LMS algorithm for perturbations on the secondary path model. They only
derive guaranteed stability limits (in terms of classes of perturbations under which the
control system is guaranteed to remain stable) for the single-channel case. In the
multiple-channel case, they conduct Monte Carlo simulations for di!erent relative
perturbation levels of the secondary path, and investigate the probability of instability,
without proposing guaranteed theoretical stability limits. They show that the robust
stability of the LMS algorithm can be improved by applying some e!ort weighting (or leak).
Omoto and Elliott [8] further study the robust stability of multichannel feedforward
controllers when the secondary path is a!ected by structured perturbations. They also
characterize how di!erent types of physical perturbations of the secondary path produce
structured perturbations of the singular value matrices of the secondary path. They propose
two stability criterions, one appearing to be too optimistic and the other one, which is based
on the Gershgorin circle theorem [9], to be over conservative. This paper makes
a signi"cant contribution to this research area by presenting su$cient conditions for the
robust stability of the adaptive multiple-channel LMS algorithm, in the case of both
unstructured and structured perturbations of the secondary path transfer function matrix.
Simulations show that the obtained stability limits are much more reliable than those given
by Omoto and Elliott [8]. The proposed methods also allow the smallest leak parameter to
be chosen which still guarantees the stability of the adaptive algorithm in the case of
a bounded, structured set of perturbed secondary paths. As such, they solve the robust
stability analysis and design problem for the adaptive leaky LMS algorithm.

The robust performance issue for the single-tone multiple channel LMS algorithm is also
addressed in this paper. Research in this area has mainly focussed on the e!ect of secondary
path perturbations on the performance of LMS algorithms, and on the bene"cial in#uence
of leak (see e.g. references [5, 6, 8]). Here, the robust performance design problem, instead of
the robust performance analysis problem, is treated. An algorithm that minimizes the
worst-case residual control error under additive perturbations, which are unknown but
bounded in maximum singular value norm, is presented. The perturbations are either
unstructured or structured, in which case they a!ect the secondary path closely. The
proposed method yields an exact solution in the case of a full unstructured uncertainty
block, but only a close upper bound to the exact solution in the case of structured
uncertainty.

The robust performance and the robust stability analysis problem are both formulated
as convex semide"nite programming (SDP) problems. SDP problems are convex
optimization problems, and consist in minimizing a real linear objective function of
a vector of variables x3Rm, subject to linear real-valued matrix inequality (LMI)
constraints [10]:

min cTx

s.t. F (x)*0, (1)
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where

F (x),F0#
m
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i/1
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Fi (2)

The problem data are the vector c3Rm and m#1 symmetric matrices F
0
,2, F

m
3Rn]n.

The inequality sign &*0' in equation (1) means that F (x) is positive semide"nite. Similarly,
the inequality sign &'0' following a matrix means that this matrix is positive de"nite.

Such SDP problems are easily and e$ciently solved in polynomial time using the recently
developed interior point methods [11, 12]. All simulations in this paper have been carried
out using the software package SDPT3 [12], a Matlab implementation of infeasible
path-following algorithms for solving standard SDP problems. This code does not exploit
any particular problem structure, except for sparsity and block-diagonal structure of data
matrices.

The next section introduces the system under study, and the uncertainty models which
are used to describe the possible perturbations on the nominal system. In section 3, the
deterministic multiple-channel LMS control design problem is formulated as an SDP
problem, taking into account the possible limited capacity of the control sources. Section 4
de"nes the robust LMS control problem and presents its solution as an SDP problem, "rst
for the unstructured, and later also for the structured perturbations case. Section 5 deals
with the robust stability analysis of the adaptive multiple channel LMS algorithm. Finally,
some conclusions are drawn in the last section.

The paper presents a theoretical framework which is the result of a synthesis of concepts
from di!erent scienti"c "elds such as active noise and vibration control, robust control
and convex optimization. Illustrative simulations support and clarify the theoretical
contributions in the paper.

2. DESCRIPTION OF THE SIMULATION AND PERTURBATION MODELS

2.1. DEFINITION OF THE SIMULATION MODEL

The system under study in this paper is a box-like acoustical volume, representing
a room, with rigid walls except for a #exible glass plate, incorporated in one of the side walls
and representing a window. This set-up, which was originally designed for another study, is
shown in Figure 1. The dynamic behaviour of this system is analyzed by a coupled
vibro-acoustic "nite element model. The acoustical subsystem is modelled with 42
eight-noded solid elements in the x direction, 18 in the y direction and 28 the in z direction,
resulting in 21 168 elements in total. The room is "lled with air with a speed of sound of
340 m/s and a density of 1)225 kg/m3. The glass plate is modelled by 160 four-noded plate
elements, 16 in the x direction and 10 in the y direction. The density of the glass is
2500 kg/m3, the Young's modulus 72 GPa and the Poisson coe$cient 0)21. Transfer
functions are calculated using the modal superposition technique with a set of 43 coupled
eigenmodes with eigenfrequencies up to 150 Hz, assuming a modal damping of 2% for all
modes. A sound "eld in the room is generated by a set of 20 randomly incident plane waves
on the window at 87 Hz.

An active noise control system is installed in this room to suppress the primary "eld. The
baseline system drives eight control sources, located in the eight corners of the room, so as
to reduce the acoustic "eld measured by nine error microphones in a horizontal plane at
1)5 m above the ground. The locations of these sensors and control sources are also
indicated in Figure 1. If control systems with di!erent numbers of sensors or control sources
are used in the simulations throughout the paper, the control sources are randomly chosen



Figure 1. Schematic view of the system under study. All dimensions are given in meters. f , control source;
L, error microphone.
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on the six walls of the room, and the sensors are randomly chosen in the horizontal plane at
1)5 m above the ground.

2.2. DESCRIPTION OF THE UNCERTAINTY MODELS

This section introduces the basic models for representing unknown or unmodelled
variations of a system around its known nominal behaviour. The term &&uncertainty''
generally refers to unknown or unpredictable model variations, while the term
&&perturbation'' refers to known or predictable model variations, such as non-linear e!ects
which cannot be dealt with in a linear control theory. In the following section a clear
distinction is no longer made between both terms as they are treated in exactly the same
way. The basic concept in modelling an uncertain system is to separate what is known from
what is unknown in a feedback-like connection, known as a linear-fractional representation,
and bound the possible values of the unknown elements [4]. Such a linear-fractional
representation allows perturbed transfer function matrices to be modelled whose elements
depend rationally on the independent perturbation sources. In this paper, only close
dependencies of the perturbed secondary path on the perturbations are considered. The
perturbed transfer function matrix G is written as

G"G0#DG, (3)

where DG is an additive perturbation on the nominal transfer function matrix G
0
.

In the simple unstructured perturbations case, the perturbed transfer function matrix
G belongs to a sphere with radius o around G

0
:

G"G0#oD, (4)

where the perturbation block is only known to be unstructured and bounded in norm
EDE)1.
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Throughout this paper, the maximum singular value norm is used for matrix norms, and
the Euclidean norm for vectors. The parameter o is the perturbation size. In case the
primary "eld d is also a!ected by perturbations, the unstructured uncertainty model takes
the form

[G d]"[G0 d0]#oD with D"[DG Dd] and EDE)1. (5)

Before proceeding to the structured perturbations case, consider "rst the singular value
decomposition of the nominal secondary path

G0"UR0V
H. (6)

Using the left and right singular vectors of the nominal secondary path G
0
, it is possible to

express the perturbation as

DG"UDRVH, (7)

where DR is not necessarily diagonal.
Omoto and Elliott [8], and Baek and Elliott [13] investigated how DR is a!ected by

di!erent types of physical perturbations on a system similar to the one depicted in Figure 1.
Baek and Elliott [13] observed that the e!ect of structured perturbations, such as
di!racting objects in the acoustic volume, mainly appears in the upper left part of DR.
Therefore, in the present study it is also assumed that the magnitude of each element in DR
is inversely proportional to its distance from the top left element, in agreement with
conclusions drawn by Baek and Elliott [13]. This structure in the maximum magnitude of
each element of DR is modelled in the (normalized) weighting matrix W:

W) i, j"S
2

i2#j2
for i"1,2,N

e
and j"1,2, N

c
and W"

W)

EW) E
. (8)

where N
e
, and N

c
, are respectively the number of error sensors and control sources in

the system. According to Baek and Elliott [13], the phase of each element of DR is
an independent random perturbation, which results in a total of N

e
]N

c
random

perturbations. This number is too high from a practical point of view, and therefore, it is
assumed here that the independent perturbations a!ect only the secondary path via the
N

e
sensor outputs. This latter assumption then yields the following structured perturbations

model for the singular-value matrix:

DR"oDWm,
and

D"diag (d
1
,2, d

Ne
), with Dd

i
D)1 for i"1,2, N

e
, (9)

where the perturbation size o controls the magnitude of the largest element in DR. In case
the primary "eld is also subject to uncertainty, the structured perturbations model is
extended with

Dd"UDRVH
d , (10)

where V
d
is arbitrarily constructed by averaging the rows of V and multiplying the resulting

vector by EdE. The underlying assumption is that the independent perturbations a!ect the
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response of the system on the primary excitation in the same way as that on the secondary
excitation.

Note that this choice of structure in the perturbations is quite arbitrary, but it only serves
to illustrate the theoretical contributions of the paper. In practice, structure in the
perturbations depends on the actual application being considered. The "rst step in
designing a robust controller is always the identi"cation of an appropriate nominal
model and of a representative model of the uncertainty or perturbations on that nominal
model.

3. SDP FORMULATION OF THE QUADRATIC CONTROLLER MODEL

This section de"nes the deterministic LMS controller design problem with e!ort
constraints on the individual control sources, as treated by Elliott and Baek [14], as
an SDP problem. The vector of signals e measured by the error sensors (the residual
"eld) consists of a component due to the disturbing sound "eld (the primary "eld), d,
and a component due to the control action (the secondary "eld), Gu, where G is
the secondary path transfer function matrix and u is the vector of control signals, such
that

e"d#Gu. (11)

In the case of a tonal excitation, the multiple-channel LMS controller yields the solution to
the following quadratic optimization problem [6]:

min
p,u

p

s.t. p"(d#Gu)H(d#Gu) (12)

with d, G and u being complex-valued vectors or matrices and p a real scalar. The complex
optimization problem (12) is "rst converted into one involving only real-valued matrices
and vectors. Therefore, it is convenient to introduce the real counterparts of the complex
e, d, u, and G matrices

e"G
Re(e)

Im(e)H, d"G
Re(d)

Im(d)H, u"G
Re(u)

Im(u)H, and G"C
Re(G) !Im(G)

Im(G) Re(G)D. (13)

The real-valued counterpart of equation (11) then becomes

e"Gu#d. (14)

After some simple algebraic manipulations and the use of Schur complements (see
Appendix A), the complex quadratic optimization problem, equation (12), can be posed as
the following SDP problem in p and u with one LMI constraint:

min
p,u

p

s.t. C
I (d#Gu)

(d#Gu)T p D*0. (15)

Possible limits on the individual control signals to the secondary sources, as introduced
by Elliott and Baek [14], are easily incorporated in this SDP formulation after conversion



ROBUST ACTIVE NOISE CONTROL 29
into additional LMI constraints. Consider the limitation of the uth complex control
signal

DuuD)Dumax
u D. (16)

The real and imaginary parts of this control signal are selected from the real vector u by
means of a selection matrix Ru

C
u
u

u
u`Nu
D"C

0 2 1 2 0 2 0 2 0

0 2 0 2 0 2 1 2 0Du"Ruu. (17)

Using equation (17), inequality (16) turns into the following inequality:

(Ruu)T (Ruu))Dumax
u

D2. (18)

The application of the Schur complements of Appendix A allows the conversion of the
non-linear inequality (18) into the LMI constraint

C
IDumax

u
D (Ruu)

(Ruu)T Dumax
u

DD*0. (19)

After the conversion of the real vector u, which is the solution to the problem (15) subject to
an appropriate number of constraints (19), into the complex vector u with the bounded
complex control signals, the Lagrange multipliers of Elliott and Baek (equation 5 in
reference [14]) in the diagonal matrix K are recovered by solving the complex set of
uncoupled algebraic equations

Ku"!GH (d#Gu). (20)

The resulting controller can then be implemented by the following adaptive algorithm

u (k#1)"(I!aK)u (k)!aGHe(k), (21)

where a is the convergence coe$cient.
Figure 2. Computation times for solving the optimal LMS control problem with di!erent numbers of
limited-capacity control sources and error sensors ()))))))))), 5; } } } }, 10; **, 20; } ) } ) } ) }, 40), in bold lines with
SDP methods and in grey lines with classical non-linear optimization methods.



Figure 3. Computation times for solving the optimal LMS control problem with di!erent numbers
of limited-capacity control sources and error sensors ())))))))), 5; } } } }, 10; **, 20; } ) } ) } )}, 40) using SDP
methods.
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Theoretically, there is no di!erence between the Kuhn}Tucker formulation of this
problem (in reference [14]) and the SDP formulation of equations (15) and (19). The
Lagrange multipliers on the diagonal of the (diagonal) matrix K indeed appeared to be
real numbers in the simulations. The main advantage of the SDP formulation of the
optimal control problem with e!ort constraints on the individual control signals is
its superior computational e$ciency in comparison with classical iterative methods.
Figure 2 compares the computation times for solving this constrained optimal control
problem with a classical sequential quadratic programming method (SQP, see reference
[15]) in grey lines and with the SDP method in bold lines, for control systems with
di!erent numbers of control sources and error sensors. The SDP method is more than
ten times faster than the classical method for solving problems with a large number
of control sources and error sensors, occurring for example in active aircraft cabin
noise reduction. Figure 3 shows the same computation times, but for the SDP method
only. The required computation times increase only linearly with the number of control
sources in the system.

4. SYNTHESIS OF ROBUST LMS CONTROLLERS

4.1. THE UNSTRUCTURED PERTURBATIONS CASE

The previous section showed how the nominal deterministic multiple-channel LMS
algorithm with limited-capacity secondary actuators can be formulated as an SDP problem.
Here, it is assumed that both the secondary path transfer function matrix G and the primary
"eld vector d are subject to unknown but bounded and (not necessarily small) deterministic
perturbations, and it will be shown how the problem of "nding a controller which
minimizes the worst-case residual, can also be posed as an SDP problem. The results
presented here are essentially based on the application of the theoretical results by El
Ghaoui and Lebret [16].
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Consider the perturbed system de"ned in equation (5). The robust performance analysis
problem amounts to computing the worst-case residual control error for a "xed control
signal vector:

p (G
0
, d

0
, o, u)"max

DDDDD)o

E(G
0
#DG)u#(d

0
#Dd)E. (22)

The optimal robust controller minimizes the function p in equation (22), thereby trading o!
accuracy for robustness (with respect to the assumed perturbation model):

p
opt

(G
0
, d

0
, o)"min

u

max
DDDDD)o

E(G
0
#DG)u#(d

0
#Dd)E. (23)

According to El Ghaoui and Lebret [16], the minimax problem (23) can then be posed as
a convex second order cone programming (SOCP) problem. Using Schur complements, this
SOCP formulation is easily converted into an SDP formulation for solving problem (23).

min
p,q,u

p

s.t. C
(p!q)I (G

0
u#d

0
)

(G
0
u#d

0
)T (p!q) D*0 (24)

C
qI oC

u
1D

o [uT 1] q D*0.

At the optimum, the variable q takes the following value:

q
opt

"oJEuE2#1. (25)

The solution to the original SOCP problem and to the SDP problem (24) is given by

u"G
!(kI#GT

0
G

0
)~1GT

0
d
0

if k,o2
(p!q)

q
'0,

!G`
0

d
0

else (k"0).
(26)

The degenerate case (k"0) occurs when d
0

is in the column space of G
0
, and the

corresponding pseudo-inverse solution yields the minimum-norm control signal vector. In
the non-degenerate case, the solution has the same form as that given by Elliott et al.
(equation 7 in reference [6]), where the leak parameter b was introduced to improve the
robustness of the controller and was chosen a priori. Here, the parameter k plays the same
role, but it is the a posteriori result of the robust control design problem (24). This
formulation allows an optimal choice to be made, from a robustness point of view, for
the leak parameter k with respect to the assumed perturbation size. Figure 4 shows the
optimal k, from a robust performance point of view, as a function of the assumed
perturbation size o for the control system with eight control sources and nine error
sensors. The horizontal dashed lines represent the singular values of the secondary
path transfer matrix G

0
. This result is validated by means of a Monte Carlo simulation

of 1000 perturbed systems with a perturbation size o equal to 10~5. Figure 5 shows
the distribution of the primary "eld attenuations achieved by the robust controller (26)
with k+10~9 in light bars, and by the nominal controller in dark bars (k"0). The
robust controller achieves a much higher average attenuation, and the variance on the
attenuations is also much smaller.



Figure 4. Evolution of the optimal leak parameter for robust performance in the face of unstructured
perturbations of secondary path and primary "eld, as a function of perturbation size. The dashed grey lines
represent the singular values of the secondary path.

Figure 5. Distribution of the primary "eld attenuations achieved by the robust controller with k+10~9 in light
bars, and by the nominal controller in dark bars (k"0), over 1000 perturbed systems (perturbon size o"10~5).
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In case the primary "eld is not a!ected by the perturbations (Dd"0 in equation (5)), the
robust controller is the solution to the SDP problem (24), with the second LMI condition
replaced by

C
qI ou

ouT q D*0. (27)

An additional advantage of the SDP formulation (24) is the fact that other constraints, such
as the limitations on the individual control signals in equation (19), can easily be
incorporated in the problem.
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4.2. THE STRUCTURED PERTURBATIONS CASE

In this section, it is assumed that the perturbations on both the secondary path G and the
primary "eld d depend closely on the unknown uncertainty matrix D:

[G(D) d (D)]"[G0 d0]#oLD[RG Rd]. (28)

The uncertainty matrix is bounded in norm (by unity), and structured. The parameter
o again determines the size of the perturbations. Let DS be a subspace of RN]N with the same
structure as D, and where N equals the number of independent uncertainty sources in the
system. De"ne the worst-case residual as in equation (19):

p (G
0
, d

0
, u)"max

D3Ds
DDDDD)1

EG(D)u#d (D)E. (29)

Computing this worst-case residual is di$cult, in the sense that it cannot be performed in
polynomial time (the problem is NP-hard). Just as for the robust performance analysis of
feedback systems, it is possible to compute an upper bound on the worst-case residual in
polynomial time, and the concept of scaling the uncertainty block is also applied here in
order to minimize this upper bound using SDP. This theoretical result establishes a parallel
between the k-analysis and synthesis procedure for designing robustly performing feedback
systems [4], and the SDP formulation for designing (single-tone) multi-channel LMS
algorithms under a robust performance requirement.

The minimization of the upper bound on equation (29) requires the introduction of some
additional linear subspaces (for scaling purposes):

B,MB3RN]NDBD"DB, ∀D3DSN ,

S,MS3BDS"STN,

T,MT3BDT"!TTN.

(30)

El Ghaoui and Lebret [16] formally prove that a minimal upper bound j on the optimal
worst-case residual can be obtained by solving the following SDP problem:

min
S,T,j,u

j

s.t. S3S, T3T,
and

C H
(G

0
u#d

0
)

(R
G
u#R

d
)

(G
0
u#d

0
)T (R

G
u#R

d
)T j D'0, (31)

with

H"C
jI!o2LSLT oLT

oTTLT S D
where L, R

G
, and R

d
are the real-valued equivalents of L, RG, and Rd, constructed in the

same way as in equation (13). The matrices S and T are scaling matrices which aim to reduce
the e!ect of the perturbations on the outcome of the SDP problem as much as possible.
They play a similar role as the D-scaling matrices in the computation of the structured
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singular value (or k) in the robust stability analysis of state space models subject to
structured perturbations via a linear-fractional transformation [4].

If H'0 at the optimum, the upper bound is exact. Due to the strictly positive
de"niteness of H, its inverse exists, and if R

G
is of full rank, the solution to the SDP problem

(31) can be interpreted as the weighted least-squares solution for the following augmented
problem:

min
u

Z"[(G
0
u#d

0
)T (R

G
u#R

d
)T]H!1C

(G
0
u#d

0
)

(R
G
u#R

d
)D. (32)

In that case, the design of a multi-channel LMS algorithm for robust performance consists
in solving the SDP problem (32) for the weighting matrix H and the weighted augmented
quadratic optimization problem (31).

Consider now the case when the uncertainty block D is diagonal, and the matrices L,
RG and Rd are obtained from the structured perturbation model of section 2.2:

L"U, RG"WVH and Rd"WVH
d . (33)

As a result of the uncertainty block being diagonal, the matrix S is diagonal too, the matrix
T equals the null matrix, and the matrix H takes the following form:

H"C
jI!o2S 0

0 SD. (34)

This result is validated by means of a Monte Carlo simulation of 1000 perturbed systems
with a perturbation size o equal to 2]10~4. Figure 6 compares the distributions of the
primary "eld attenuations achieved by the unstructured perturbations robust controller in
dark bars, and by the structured perturbations robust controller in light bars. Obviously,
ignoring structure in the perturbations leads to a controller which is robust against a much
wider variety of possible system perturbations than those actually occurring. Such
a controller achieves only smaller reductions than a controller which is speci"cally designed
for robustness against perturbations with a particular structure.
Figure 6. Distributions of the primary "eld attenuations achieved by the unstructured perturbations robust
controller in dark bars, and by the structured perturbations robust controller in light bars, over 1000 perturbed
systems with a perturbation size o"2]10~4.
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In case the primary "eld is not a!ected by the perturbations (Rd"0), the quadratic
optimization problem (32) can be written as

min
u

p"eTQ e#uTRu. (35)

The weighting matrices, Q and R, are optimized for the given robustness model by
solving the SDP problem (31) for S, and take the following form:

Q"(jI!o2S)~1 (36)

and
R"VWTS!1WVT, (37)

where V and W are the real-valued equivalents of V and W, constructed in the same way as
in equation (13). The controller objective (35) is exactly the same as the one termed by
Elliott et al. (equation 3 in reference [6]) as &&general'', except that here an explicit distinction
is made between real and imaginary parts of the usually complex matrices. The above
discussion indicates that in fact this controller objective represents a special case of the
general robust multi-channel LMS control design problem. Again the weighting matrices
are not chosen a priori, as is very often assumed, but they are the a posteriori result of
solving the robust control design problem for a given robustness model. Choosing this
robustness model, based on physical insight into the practical problem being considered, is
easier than choosing the weighting matrices directly.

5. ROBUST STABILITY ANALYSIS OF THE ADAPTIVE LMS ALGORITHM

5.1. THE ROBUST STABILITY CONDITION

This section deals with the stability analysis of the adaptive multiple-channel LMS
algorithm, whose behaviour is described (in a frequency domain implementation) by

u (k#1)"(1!ab)u(k)!aGH
0 e(k), (38)

where k denotes the discrete time, G
0

is the model of the secondary path in the controller,
a is the convergence coe$cient, and b is the leak parameter [5, 6]. This adaptive algorithm
is stable provided that [6]

Re(eig(GH
0 Gp(D)#bI))'0, (39)

where Gp(D) is the actual secondary path, which may be subject to unknown perturbations
around its nominal state (G

0
) under practical operation conditions. The aim of this section

is to derive a condition which guarantees that equation (39) is satis"ed for all possible
perturbations D in the considered uncertainty model.

Consider now an autonomous linear system, described in the state space

x5 "Ax. (40)

This system is internally stable if all its poles lie on the left-hand side of the imaginary axis
in the complex plane. This condition is equivalent to the following requirement on the
eigenvalues of the state transition matrix A

Re(eig(A))(0. (41)
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From linear system theory it is known that equation (41) is equivalent to the existence of
a Lyapunov function, proving quadratic stability, or

&P*0, Q*0,

ATP#PA"!Q.
(42)

According to Boyd et al. [17], this Lyapunov stability condition can be written as an
LMI feasibility problem in P

find P

s.t. P*0,

ATP#PA(0.

(43)

The matrix P is the Hessian of the quadratic Lyapunov which is used to prove quadratic
stability of system (40).

The similarity between conditions (39) and (41) allows the stability condition of the
adaptive multiple-channel LMS algorithm to be posed as an uncertain LMI feasibility
problem:

find P

s.t. P*0

(GT
0
G

p
(D)#bI)TP#P(GT

0
G

p
(D)#bI)'0,

(44)

where G
0

and G
p

are the real-valued equivalents of G
0

and Gp.
This robust stability condition will be further elaborated in the following paragraphs for

the unstructured and the structured perturbations case.
Note that the original stability condition (39) ignores the in#uence of the convergence

coe$cient a of the adaptive process. This e!ect could be taken into account by replacing
equation (39) by the following stability condition [5, 6, 18] (for "xed a):

Re(eig(I!a (GH
0 Gp (D)#bI)))'0 (45)

and adapting the subsequently derived conditions accordingly.

5.2. THE UNSTRUCTURED PERTURBATIONS CASE

The actual secondary path, G
p
, is assumed to belong to a bounded set around the

secondary path model G
0

on which the adaptive algorithm relies:

Gp"G0#oD, ∀D, EDE)1. (46)

Substituting equation (46) into equation (44) yields the following uncertain LMI problem:

find P

s.t. P*0

(GT
0
G

0
#bI)TP#P (GT

0
G

0
#bI)#oDTG

0
P#oPGT

0
D'0. (47)

Stability is assured only if condition (47) is satis"ed for all possible perturbations D whose
norm is bounded by one. The following lemma, which is a corollary of the S-procedure and



Figure 7. Minimal required leak b to guarantee the stability of an adaptive LMS algorithm when the secondary
path is subject to unstructured perturbations of size o. The dashed grey lines represent the singular values of the
secondary path.
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whose proof is given by El Ghaoui and Lebret [16], allows the in"nite number of conditions
(39) to be replaced by one single equivalent condition.

Lemma 5.1. ¸et M1"MT
1 , M2, M3 be real matrices of appropriate size. ¹he inequality

M1#M2DM3#MT
3D

TMT
2(0 holds for every D, EDE)1, if and only if &j'0, j3R, such

that M1#(1/j)M2M
T
2#jM3M

T
3(0.

Applying Lemma 5.1 to equation (47) yields an equivalent robust stability condition in
the form of an LMI feasibility problem in P and j:

&P*0, j'0,

[(GT
0
G

0
#bI)TP#P(GT

0
G

0
#bI)]#

1

j
o2I#jPGT

0
G

0
P'0. (48)

By replacing jP by P
0
, or alternatively by taking j"1, and by searching for the

maximal o2 for which equation (48) still holds, it is now possible to calculate the largest
size of secondary path perturbations under which the stability of an adaptive LMS
algorithm, characterized by a secondary path model G

0
and a leak parameter b, is still

guaranteed:

max
o2,P0

(o2)

s.t. P0*0

[(GT
0
G

0
#bI)TP0#P0(GT

0
G

0
#bI)]#P0GT

0
G

0
P0#o2I'0.

(49)

The SDP problem (49) has been solved for 50 values of b ranging from 10~7 to 10~2, and
the corresponding stability limit o is plotted (on the abscissa) in Figure 7. Obviously, this
"gure shows that, in the range of the singular values of the secondary transfer path matrix,
the leak parameter b should increase in proportion to the perturbation size and to the
largest singular value of the secondary path.
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Finally, note that this result can also be obtained by searching for the largest
o (for a given G

0
and b) for which the following algebraic Riccati equation has a

solution:

(GT
0
G

0
#bI)TP0#P0(GT

0
G

0
#bI)#P0GT

0
G

0
P0#o2I"0. (50)

5.3. THE STRUCTURED PERTURBATIONS CASE

The actual secondary path is now structured and de"ned as in section 2.2:

Gp"G0#U0DRVH
0 ,

where DR"oDW,

and D"diag(d
1
,2,d

Ne
), with d

i
)1, for i"1,2,N

e
.

(51)

Substituting equation (51) into equation (44) then yields the following stability condition, to
be satis"ed for all diagonal D, with EDE)1:

find P

s.t. P*0

(GT
0
G

0
#bI)TP#P (GT

0
G

0
#bI)#oVWTDTUTG

0
P#oPGT

0
UDWVT'0

(52)

where U is the real-valued equivalent of U.
The next lemma is a generalization of Lemma 5.1 for the structured perturbations

case.

Lemma 5.2. ¸et M1"MT
1 , M2, M3 be real matrices of appropriate size. ¸et DS be a subspace

of RN]N with the same structure as the uncertainty block D. ¹he inequality M1#M2DM3#

MT
3D

TMT
2(0 holds for every D3DS, with EDE)1, if &S3S, T3T, de,ned as in equation (30),

such that
S'0

C
M1!M2SMT

2 MT
3#M2T

M3!TMT
2 S D'0.

Applying this lemma, whose proof is detailed by El Ghaoui and Lebret [16], to equation
(52) yields only a su$cient condition (and no longer necessary as in the unstructured
perturbations case) for the robust stability of the adaptive LMS algorithm. Due to the
diagonality of the perturbation block, the subspace S only contains diagonal matrices, and
the subspace T only the null matrix. The stability condition then becomes an LMI feasibility
problem in S and P:

"nd S diagonal, P

s.t. P*0, S'0, (53)

C
(GT

0
G

0
#bI)TP#P (GT

0
G

0
#bI)!o2GT

0
USUTG

0
PVWT

WVTP S D'0.
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Note that only the relative magnitude of S and P in equation (53) are relevant, not their
absolute magnitude. Therefore, the feasibility problem (53) can be replaced by an equivalent
maximization problem with improved numerical properties:

max
c,P,S

c

s.t. P!cI*0, I!P*0, S'0, S diagonal (54)

C
(GT

0
G

0
#bI)TP#P (GT

0
G

0
#bI)!o2GT

0
USUTG

0
PVWT

WVTP S D'0.

Stability is thus assured when the objective c in equation (54) is positive.
Given an exact model G

0
of the nominal secondary path, and given a set of all actually

possible secondary paths, described by a perturbation structure W and size o around
the nominal secondary path, it is now possible to determine the smallest leak parameter
b
s

which guarantees stability of the adaptive algorithm under all actually occurring
operation conditions by solving the SDP problem (54) for subsequent b's and choosing
the smallest one for which c is positive. A similar problem is discussed by Omoto and
Elliott [8]. They "rst present a conservative stability condition which they derive from
the Gershgorin circle theorem [9]. When leak is present, this condition can be
written as

p
c
#

b
p
c

'

Nc
+
e/1

DDRe,cD for c"1,2,N
c
, (55)

where p
c
is the cth singular value of the secondary path matrix G

0
. Taking into account the

structure and the size of the perturbation in equation (51), the right-hand side of (55) is
bounded by

o
Nc
+
e/1

We,c'
Nc
+
e/1

DDRe,cD for c"1,2, N
c
. (56)

Combining equations (55) and (56) allows the lower bound on the leak parameter to be
calculated to satisfy the stability condition derived from the Gershgorin circle theorem

bg" max
c/1,2,Nc

Apc
o

Nc

+
e/1

We,c!p2
cB. (57)

As an alternative to this conservative bound, Omoto and Elliott [8] propose to consider
only the diagonal terms in DR, assuming that they are more important for determining
stability of the adaptive algorithm:

p
c
#

b
p
c

'!Re(DRc,c) for c"1,2,N
c
. (58)

Taking into account the structure and the size of the perturbation in equation (51),
condition (58) yields the following lower bound on the leak parameter:

b
d
" max

c/1,2,Nc

(p
c
oWe,c!p2

c
). (59)



Figure 8. Fraction of unstable adaptive algorithms in 2000 simulations with structured perturbations on the
secondary path (o"10~2). The vertical lines indicate di!erent lower bounds on the leak to guarantee stability
(diagonal of DR: b

d
, from the simulations: b

mc
, theoretical limit for structured perturbations: b

s
, theoretical limit for

unstructured perturbations: b
u
, Gershgorin circle theorem: b

g
).
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These di!erent theoretical lower bounds on the leak parameter have been confronted with
a Monte Carlo simulation. The basic stability condition (39) is checked for 2000 di!erent
secondary paths, G

p
, with structured perturbations as described in equation (51) with

a perturbation size o equal to 10~2, at each single-leak parameter, and the fraction of
unstable systems is plotted in Figure 8 for 80 logarithmically spaced values of b between
10~6 and 10~4. The lowest leak for which none of the perturbed systems resulted in an
unstable algorithm is represented in Figure 8 by the thin vertical line with index b

mc
. The

theoretical lower bounds introduced in this section are also represented by di!erent vertical
lines, as well as the theoretical bound b

u
calculated using the method from the previous

section, thus ignoring any structure in the perturbation. This latter bound b
u
can be read

directly from Figure 7 (at o"10~2). The results in Figure 8 clearly indicate that the
theoretical lower bound, b

s
, computed by taking into account structure in the perturbation

with the method presented here, is larger than, but very close to the one observed from the
Monte Carlo simulations. Note that, from a theoretical point of view, this method yields
su$cient stability conditions, and thus only produces a guaranteed upper limit (on the
lower bound) on the necessary leak. In simulations, this upper limit proves to be very tight.
The method from the previous section, which yields su$cient and necessary stability
conditions for unstructured perturbations, produces an over-conservative lower bound on
the leak when the perturbations are actually structured. The lower bound, obtained from
the Gershgorin circle theorem is even more conservative, though it takes into account the
perturbation structure. The stability criterion which only takes into account the diagonal
elements of DR, yields an over-optimistic lower bound on the required leak. The new
method presented here allows an adaptive multiple-channel leaky LMS algorithm be
designed which is guaranteed to be stable in the face of structured secondary path
perturbations, but which does not reduce the performance too much by using too high
a leak parameter.
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6. CONCLUSIONS

The problem of designing robust feedforward control systems for active noise control
applications with single-tone disturbances is considered in this paper. The main concept in
the paper is the formulation of the nominal performance or the nominal stability analysis of
the LMS control algorithm as a semide"nite programming (SDP) problem, followed by the
application of the S-procedure to derive new SDP formulations for these problems when the
data matrices are subject to uncertainty. These robust SDP formulations yield exact robust
solutions in the unstructured perturbations case, and upper bounds on the exact robust
solutions in the structured perturbations case.

An SDP problem is a convex optimization problem, consisting of a linear objective
function subject to linear matrix inequality (LMI) constraints. Such SDP formulations are
attractive from a practical point of view, because recently developed interior-point methods
solve SDP problems with a few hundred variables in a!ordable computation times (seconds
up to a few minutes).

Firstly, an SDP formulation is presented for the design of multi-channel LMS algorithms
with limited-capacity secondary sources. Simulations show that this SDP formulation is an
order of magnitude more computationally e$cient than the usual non-linear constrained
optimization formulations.

Secondly, the design of robust LMS algorithms is presented as an SDP problem. These
algorithms minimize the worst-case control error in the presence of unknown but norm-
bounded perturbations on the secondary path model and on the primary "eld. The resulting
controllers are exact solutions to the robust control design problem, except in the most
general case of structured perturbations when they only minimize an upper bound
on the worst-case residual control error. Monte Carlo simulations con"rm the theoretical
results.

Thirdly, SDP formulations are proposed to compute guaranteed stability limits for the
adaptive multiple-channel leaky LMS algorithm in the presence of both unstructured and
structured perturbations on the secondary path. Monte Carlo simulations show that the
obtained stability limits are much more reliable than previously used limits, based, for
example, on the Gershgorin circle theorem. The method presented here allows an adaptive
multiple-channel leaky LMS algorithm to be designed which is guaranteed to be stable in
the face of structured secondary path perturbations, but which does not reduce the
performance too much by using an excessive leak parameter.

The main merit of the paper is the combination of di!erent existing theoretical results
into a framework which can be usefully applied for designing robust active noise control
systems. Nevertheless, additional research work is still required, in particular to de"ne
sensible estimates of possible perturbation structures in real-world applications.
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APPENDIX A: THE SCHUR COMPLEMENT

Consider the partitioned symmetric matrix X:

X"XT
"C

A B

BT CD. (A1)

Provided that AO0, the Schur complement of A in X is given by

S"C!BTA!1B. (A2)

The following Schur complement lemma [17] is frequently used to convert a non-linear
(convex) inequality into an LMI. In the formulation of the lemma, &'0' indicates that the
matrix is symmetric and positive de"nite, and &*0' indicates that the matrix is symmetric
and positive semide"nite.

Schur Complement ¸emma (without proof )
f X'0 if and only if A'0 and S'0.
f If A'0, then X*0 if and only if S*0.
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